Spectral theory and operator ergodic theory on super-reflexive Banach spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Analysis Methods in Operator Ergodic Theory on Super-reflexive Banach Spaces

On reflexive spaces trigonometrically well-bounded operators (abbreviated “twbo’s”) have an operator-ergodic-theory characterization as the invertible operators U whose rotates “transfer” the discrete Hilbert averages (C, 1)-boundedly. Twbo’s permeate many settings of modern analysis, and this note treats advances in their spectral theory, Fourier analysis, and operator ergodic theory made poss...

متن کامل

Ergodic Theory on Moduli Spaces

Let M be a compact surface with (M) < 0 and let G be a compact Lie group whose Levi factor is a product of groups locally isomorphic to SU(2) (for example SU(2)). Then the map

متن کامل

Ergodic Theory on Homogeneous Spaces and Metric Number Theory

Article outline This article gives a brief overview of recent developments in metric number theory, in particular, Diophantine approximation on manifolds, obtained by applying ideas and methods coming from dynamics on homogeneous spaces. Glossary 1. Definition: Metric Diophantine approximation 2. Basic facts 3. Introduction 4. Connection with dynamics on the space of lattices 5. Diophantine app...

متن کامل

On Polar Cones and Differentiability in Reflexive Banach Spaces

Let $X$ be a  Banach  space, $Csubset X$  be  a  closed  convex  set  included  in  a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a  bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set  $C$,  so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...

متن کامل

Q-reflexive Banach Spaces

Let E be a Banach space. There are several natural ways in which any polynomial P ∈ P(E) can be extended to P̃ ∈ P(E), in such a way that the extension mapping is continuous and linear (see, for example, [6]). Taking the double transpose of the extension mapping P → P̃ yields a linear, continuous mapping from P(E) into P(E). Further, since P(E) is a dual space, it follows that there is a natural ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2010

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm200-3-2